

Efficient Mapping of CNNs onto Tightly Coupled Processor
Arrays

Christian Heidorn*, Michael Witterauf, Frank Hannig, Jürgen Teich

Hardware/Software Co-Design, Friedrich-Alexander University Erlangen-Nü rnberg, Germany.

* Corresponding author. Tel.: +49 9131 85 67312; email: Christian.Heidorn@fau.de
Manuscript submitted May 6, 2019; accepted July 25, 2019.
doi: 10.17706/jcp.14.8 541-556.

Abstract: In this work, we show how to systematically map Convolütional Neüral Networks (CNNs) onto

Tightly Coüpled Processor Arrays (TCPAs), a class of massively parallel accelerators for many

compütationally intensive tasks (e.g., from the digital signal and image processing domain). Contrary to

previoüs approaches and implementations, we propose techniqües for the layer-parallel execütion of CNNs

on processor arrays inclüding the maximally overlapped processing of consecütive layers. This is achieved

throügh layer füsion and loop ünrolling to exploit the füll pipelining potential of süch massively parallel

architectüres for given CNNs. These transformations are also necessary to decrease the nümber of on-

chip/off-chip data transfers. For CNNs, we present a calcülüs for achievable performance and memory

reqüirements on TCPAs. Based on this calcülüs, it is shown how either throüghpüt-maximal mappings can be

determined for a given architectüre. Alternatively, resoürce-minimized mappings to süstain a given

throüghpüt, e.g., nümber of frames per second, are systematically derived. The approach is evalüated for a

CNN model for the MNIST benchmark on a processor array of size 4x4 inclüding a comparison of the

performance of the layer-parallel approach over layer-by-layer processing.

Key words: CNN accelerator, TCPA.

1. Introduction

Nowadays, CNNs (Convolutional Neural Networks) [1]-[3] are a primary approach in different computer

vision tasks and are used for example in image recognition and image segmentation in images and videos [1].

The common machine-learning technique, where CNNs are utilized, is called supervised learning. Hereby, a

CNN is trained for a specialized task on a dataset (i.e., a sequence of images). For the training phase, powerful

systems, mostly GPUs and TPUs (Tensor Processing Units, [4]) have been proposed to accelerate the

computationally expensive process [5]. For the inference part which describes, for example, if the trained

network is used for classification of input data, often accelerators like ASICs, FPGAs, and CGRAs (Coarse

Grained Reconfigurable Arrays) [5]-[11] are used, because they significantly decrease the needed energy and

therefore are a great alternative for storage- and energy-limited embedded systems.

ASIC accelerators are designed for low energy devices like in [6], [7]. However, ASICs are not

reconfigurable and are thus highly inflexible because they cannot be used to accelerate any other applications.

CGRA accelerators share features like a high number of parallel processing elements (PEs) and memory

being located as near as possible to the PEs to decrease time and energy for data transfers [8]. One example

is Tightly Coupled Processor Arrays (TCPAs) [12], [13], which belong to the class of accelerators that can be

used in MPSoCs (Multi-Processor System-on-Chip) to accelerate loop programs in signal processing and

Journal of Computers

541 Volume 14, Number 8, August 2019

multi-media applications.

TCPAs are highly parameterizable architectures consisting of an array of tightly coupled lightweight VLIW

(Very Long Instruction Word) PEs. Only PEs at the four borders have access to memory buffers to save energy

(see Fig. 1(a)). Many parameters, such as the number of PEs, the number and type of functional units (i.e.,

branching, arithmetic, logic operators) within the PEs, and the connection between the PEs can be

customized at synthesis time, offering the system designer a high degree of flexibility.

Belonging to the class of coarse-grain reconfigurable arrays (CGRAs), TCPAs offer a unique combination of

multiple levels of parallelism, for example task-level parallelism, loop-level parallelism, iteration-level

parallelism and instruction-level parallelism. TCPAs are thus particularly suited to accelerate

computationally expensive nested loop programs that exhibit a high degree of parallelism such as CNNs.

TCPAs can achieve a much higher energy-efficiency than general-purpose embedded processors or

embedded GPUs [12]. For case studies including matrix-matrix multiplication, FIR-filtering, Gaussian blur

filtering, and Harris corner detection, we refer to [12], [13].

Fig. 1. (a) TCPA accelerator, such as can be integrated via a network adapter into an NoC (Network-on-

Chip)-based MPSoC architecture. The abbreviation AG denotes address generators that are responsible for

controlling the surrounding I/O buffers (several scratchpad memories at each border of the array). Also,

depicted is a RISC processor, which primarily serves for communication tasks (i.e., scheduling of DMA

transfers) and for configuring the accelerator. Further, it might be used for executing small tasks, such as the

computation of one fully-connected (Fc) layer in our case study. (b) CNN to recognize letters and digits from

28x28 pixel images as used in our evaluation. The input (black rectangle on the left side) is a 28x28x1

grayscale image of the MNIST dataset [14]. The net consists of 3 convolutional layers (Conv0, Conv2,

Conv4), 2 pooling layers (Pool1, Pool2) between two adjacent convolutional layers, and one fully-connected

layer (Fc) for the classification into 10 classes. The table below shows the size of the feature map (rows (𝑅)

x columns (𝐶) x number of features (𝑁)) and the parameters (number filters (𝑀), filter depth (𝑁), kernel

size (𝐾)) for each layer (which will be described in Section 2.1). The storage requirements of each layer are

deducted in Section 5.4.

Since convolutional layers of CNNs are based on matrix multiplications, they can be broken down into a 6-

dimensional loop nest (see Section 2.2) which makes them well suited for TCPA acceleration. For retaining

the flexibility of the architecture in accelerating different signal-processing algorithms, we provide methods

for designing TCPA implementations of a given CNN such that the inference pass can be accelerated in a

Journal of Computers

542 Volume 14, Number 8, August 2019

highly efficient pipelining structure.

The main contributions of this paper may be summarized as follows:

• For the first time, it is shown that TCPAs are an excellent candidate for efficiently accelerating CNNs

at a fixed throughput as well as maximizing throughput on a given architecture by providing a

parallel and pipelined processing of multiple layers (layer-parallel execution).

• We utilize techniques, such as layer-parallel processing, loop unrolling and loop permutation, to best

exploit the massive parallelism available in TCPA architectures.

• A performance and memory calculus is provided from which important mapping and scheduling

decisions for the individual layers of a CNN can be deducted automatically.

• Finally, we evaluate our presented layer-parallel processing approach by comparing it with a layer-

by-layer (sequential) processing approach using the example of a CNN for the MNIST benchmark.

In the following, an overview of related work is given, where we present previously proposed CNN

acceleration and architecture approaches (Section 2). Subsequently, the basics of CNNs are described with a

focus on the convolutional layer (Section 3.1). After that, layer fusion is proposed as a method for reducing

the storage consumption (Section 3.2), followed by methods to reorder the computations of the CNN (Section

3.3) to achieve a maximally overlapped processing of multiple layers. These methods are particularly useful

and also necessary to reduce the storage requirements given by memory-constrained TCPAs and for best

exploitation of parallelism (Section 4). Next, we develop a calculus for performance and memory

requirements for our proposed mappings (Section 5). Afterwards, the performance and resource

requirements of our layer-parallel mapping are applied to a CNN for the introduced MNIST benchmark and

compared with a layer-by-layer implementation (Section 6). Finally, we derive the calculus to determine the

minimal PE number to satisfy a given throughput (Section 7).

2. Related Work

In general, most CNN accelerators in literature propose sequential layer processing, see, e.g., [5], [8], [9]

which incurs significant on/off-chip transfers, sacrificing performance. Layer fusion (Section 3.2) reduces

off-chip transfers by exploiting the pipelining potential of the layers of a CNN [10]. For the convolutional

layers, loop permutation and unrolling is applied to increase data locality and to utilize the parallelism of the

architectures like in [9].

In [9], Zhang et al. propose a polyhedral-based dependency analysis, where they classify the data

dependencies between different loop dimensions on a given array. However, no layer-parallel processing is

considered in this work and the loop transformations differ from ours.

In [10] and [11], layer fusion was proposed for FPGA architectures. FPGAs consist of different

reconfigurable units, like logic blocks, DSPs, on-chip interconnections, and memory blocks. Unfortunately,

there are several penalties in operation frequency and energy consumption compared to a hardwired

application [8]. In addition, we exploit the approaches of layer-parallel processing by reducing the starting

times further, such that each subsequent layer can start with computation as early as possible.

For coarse-grained reconfigurable architectures (CGRAs), there exist different compilation-based code

generation approaches for the proposed architecture [5], [8]. EMAX [8] proposes an energy-efficient CGRA

implementation to accelerate CNNs, with even the ability of training (by switching the instruction set for the

training phase). However, no loop transformations or layer-parallel processing is proposed to utilize the

pipelining capability of CNNs to the fullest.

In [5], an auto-tuning framework for accelerating CNNs with modulo scheduled CGRAs is proposed. Hereby,

it is mostly concentrated on loop transformation, like unrolling and permutation of the loops. However, also

here, no layer-parallel processing as in our following approach is considered.

Journal of Computers

543 Volume 14, Number 8, August 2019

3. Background

3.1. Basic Principle of CNNs

Convolutional Neural Networks (CNNs) are the state-of-the-art machine learning technique for image

recognition. A CNN is composed of a set of layers of different types (i.e. pooling, fully-connected, or activation

layers), where the most specific layer type is the convolutional layer which characterizes the CNN. An

example of a CNN is depicted in Fig. 1(b). In a CNN, the convolutional layers are the computationally most

expensive part [9]. In modern CNNs, the convolutional layer is described as a convolution block which

consists of different types of convolutions like the standard convolution, the depth-wise convolution, or the

pointwise convolution. In this work, we concentrate on the standard convolution, because proposed methods

for exploiting parallelism like layer-parallel processing and loop transformations can be equally applied to

the other types of convolution blocks [11].

Fig. 2. Scheme of a standard convolütion in a CNN. From a set of 𝑁𝑖 inpüt featüre maps as inpüt (left), a set

of 𝑀𝑖 oütpüt featüre maps (right) is compüted based on the compütation shown in Eq. (1).

In a standard convolution (see Fig. 2), the input 𝑥𝑖 ∈ ℝ
𝑅𝑖×𝐶𝑖×𝑁𝑖 of a layer 𝑖 consists of 𝑁𝑖 feature maps

of spatial dimension 𝑅𝑖 × 𝐶𝑖 (rows times columns). Each input feature map 𝑛𝑖 , (0 ≤ 𝑛𝑖 < 𝑁𝑖) is convolved

by 𝑀𝑖 filters with learned weights 𝑤𝑖 ∈ ℝ
𝑀𝑖×𝐾𝑖×𝐾𝑖 for a kernel size of 𝐾𝑖 (note: for convenience, the kernel

size is assumed to have the same size in each dimension. The presented calculations are also valid for

different dimensions). For each filter 𝑚𝑖 , a bias 𝑏(𝑚𝑖) ∈ ℝ is added, which also corresponds to learned

weights. This creates 𝑀𝑖 output feature maps 𝑦𝑖 ∈ ℝ
𝑅𝑖+1×𝐶𝑖+1×𝑁𝑖 which become the input of the successive

layer 𝑖 + 1 (𝑦𝑖 = 𝑥𝑖+1).

The following equation describes the computation of one output value in the output feature map 𝑚𝑖, (0 ≤

𝑚𝑖 < 𝑀𝑖) in row 𝑟𝑖+1, (0 ≤ 𝑟𝑖+1 < 𝑅𝑖+1), and column 𝑐𝑖+1, (0 ≤ 𝑐𝑖+1 < 𝐶𝑖+1),

𝑦(𝑚𝑖, 𝑟𝑖+1, 𝑐𝑖+1) = ∑ ∑ ∑ 𝑤(𝑚𝑖, 𝑛𝑖 , 𝑘1𝑖 , 𝑘2𝑖) ⋅ 𝑥(𝑛𝑖 , 𝑆𝑖 ⋅ 𝑟𝑖+1 + 𝑘1𝑖 , 𝑆𝑖 ⋅ 𝑐𝑖+1 + 𝑘2𝑖)

𝐾𝑖−1

𝑘2𝑖=0

𝐾𝑖−1

𝑘1𝑖=0

𝑁𝑖−1

𝑛𝑖=0

+ 𝑏(𝑚𝑖)

(1)

With stride size 𝑆𝑖, the step width with that the filter is moved over the feature map. For this formula, a

pseudo-code is visualized by Algorithm 1. Equation (1) equally describes also pooling layers and the fully-

connected layers. In case of a fully-connected layer, the computation in Eq. (1) simplifies to the special case

𝑆𝑖 = 𝐾𝑖 = 𝑅𝑖 = 𝐶𝑖 = 1.

The pooling layer, which also can be seen as a down-sampling layer, because it always is applied with a

stride, 𝑆𝑖 > 1, has the effect of redücing the spatial dimension (𝑅𝑖+1, 𝐶𝑖+1) of the feature map (seen at the

Journal of Computers

544 Volume 14, Number 8, August 2019

division by 𝑆𝑖 in the equations for the output dimensions in Fig. 1(b)). For the pooling layer, the number of

filters equals 𝑀𝑖=1.

3.2. Layer Fusion

Layer fusion [10] denotes the overlapped processing of multiple layers of a CNN for a given input. We will

exploit this method to drastically save intermediate memory needed between the layers in the proposed

TCPA implementations as well as for optimizing throughput.

 The first layers of a CNN generally increase the feature map size. For example, in Fig. 1(b), compared to

the input feature map (28x28 input image), the first convolutional layer (Conv0) increases the number of

feature maps by the number of filters, thus by 24x (𝑀0 = 24 = 𝑁1, see Fig. 2). This increase of the feature

maps is common in CNNs, where the trend is to have more layers, with an increasing number of filters. Now,

if layers are computed sequentially (layer-by-layer), it is most likely that the output data needs to be stored

in off-chip memory. To decrease the amount of off-chip/on-chip transfers, layer fusion may be applied, which

was first proposed by Alwani et al. in [10].

In our proposed CNN according to Fig. 1(b), after the first convolutional layer (Conv0), the next layer, a

pooling layer (Fig. 1(b), Pool1), reduces the spatial dimension (𝑅, 𝐶) by a factor of 4x, which is typical for

pooling layers (see Section 2.1). Thus, if the pooling layer can start with its computation earlier, we might

significantly decrease the amount of data that needs to be stored between the layers.

Dependence analysis reveals that each output value of a convolution (or pooling layer) 𝑖 depends on a

small window of the previous layer 𝑖 − 1. For example (see Fig. 3), suppose that layer 𝑖 has a window size

of 𝐾𝑖 = 3 (dashed black lines) and a stride of 𝑆𝑖 = 1 , the second 𝐾𝑖+1 = 2 and 𝑆𝑖+1=2, respectively.

Obviously, one output value in 𝑦𝑖+1 depends on the input values of 𝑥𝑖+1 located in the filter window of size

𝐾𝑖+1 (shown by the 2x2 red square). One value in 𝑥𝑖+1, which equals the output 𝑦𝑖 of the previous layer,

depends on the input values, in 𝑥𝑖 located in the filter window, of size 𝐾𝑖 (shown by the black dashed

square). In summary, one output value in 𝑦𝑖+1 depends on the input values in 𝑥𝑖, located in a window of

size 𝐷𝑖=𝐾𝑖+1+𝐾𝑖 − 1 = 2 + 3 − 1 = 4 (seen in the 4x4 red square in the input on the left side). The “−1” is

subtracted at the end because we have one overlapping area, when shifting the window by 𝑆𝑖=1. Here, 𝐷𝑖

denotes the size of one dimension of a so-called receptive field. According to [10], with

 𝐷𝑖 = 𝐷𝑖+1 ⋅ 𝑆𝑖 + 𝐾𝑖 − 𝑆𝑖 ,
(2)

One can compute recursively the size 𝐷𝑖 of the receptive field, describing the size of the window in the

input layer 𝑖, needed to compute one output value in layer 𝑖 + 𝑙.

Fig. 3. Example of two layers being füsed. One oütpüt on the right (in 𝑦𝑖+1) depends on a 4x4 receptive field

of the inpüt on the left (in 𝑥𝑖), which is shown by the red rectangles. The gray area marks the receptive field

for the next oütpüt valüe.

With layer fusion, the storage transfers between the TCPA and periphery is decreased (for some nets up to

Journal of Computers

545 Volume 14, Number 8, August 2019

95%), resulting in a higher computation-to-communication ratio (FLOP/byte access) as well as performance

[10].

Fig. 4 provides a preview of the storage requirements for our proposed net (Fig. 1(b)) when processing all

layers in parallel (Fig. 4(b)). Because the pooling layers have no weights, and the intermediate data is nearly

irrelevant (see Section 5.4), one can observe only tiny storage requirements for the pooling layers (inputs).

In the layer-parallel version (Fig. 4(b)), we only need to store small amounts of intermediate results (see

Section 5.4 for the calculation), marked as the inputs for each layer. As can be seen, the storage requirements

drastically decreased in the layer-parallel version.

(a) Storage reqüirements for the layer-by-layer

(seqüential) execütion of layers

(b) Storage reqüirements for layer-parallel

execütion

Fig. 4. Storage reqüirements for the convolütional layer and pooling layers of the proposed net, consisting of

3 convolütional layers (0, 2, 4) and two pooling layers (1, 3) in between of them. For each layer, the storage

reqüirement for the cases of (a) seqüential layer-by-layer processing, compüted üsing Eq. (14) and (b)

layer-parallel processing, compüted with Eqs. (16) and (17), is shown.

Another positive effect of layer fusion is that it enables the full pipelining potential (execution of layers in

parallel) of a CNN. However, we will show in the next section that, to maximize the overlapping of processing

of consecutive layers, the order of computations can also be restructured such that the subsequent layers can

start with their computation as early as possible.

3.3. Loop Transformations

In order to allow for a maximal degree of overlapped processing of the CNN layers (if implemented in

parallel), the data dependencies between successive layer computations need to be carefully examined.

Algorithm 1 shows the pseudocode of a standard sequential loop nest for the computations of one layer

according to Eq. (1).

Algorithm 1. Pseüdocode for a standard seqüential convolütion derived from Eq. (1)

1 for (m = 0; m < M; m++) //number of output feature maps (#filters)

2 for (r = 0; r < R; r++) //number of output feature map rows

3 for (c = 0; c < C; c++) //number of output feature map columns

4 for (n = 0; n < N; n++) //number of input feature maps

5 for (k1 = 0; k1 < K; k1++) //filter kernel dimension 1

6 for (k2 = 0; k2 < K; k2++) //filter kernel dimension 2

7 output[m][r][c] += weights[m][n][k1][k2] *

 input[n][S*r+k1][S*c+k2];

8 output[m][r][c] += bias[m];

Journal of Computers

546 Volume 14, Number 8, August 2019

Obviously, layer 𝑖 + 1 can only start once the receptive region of the previous layer has finished being

computed. Thus, instead of processing one convolution filter over the whole input image, it would be much

better to compute multiple filters in an interspersed way instead. This may be achieved by loop permutation,

resulting in the transformed code shown in Algorithm 2. Apart from moving the loop with iterator 𝑚 to the

innermost position, also iterator 𝑛 has been permuted. Another advantage of this schedule is the potential

of reusing input data when processing the same input region for the total of 𝑀 filters.

Algorithm 2 describes the transformed loop nest in which loop permutations have been applied to utilize

the pipelining potential enabled by layer fusion, and achieving a broadcasting structure for a TCPA

architecture implementation. Another notable advantage of this parallelism strategy is that for common deep

CNNs, the number of filters, relating to the parameters 𝑀,𝑁 , are increasing whereas the feature map

dimensions (𝑅, 𝐶) shrink, such that 𝑀,𝑁 ≫ 𝑅, 𝐶.

Algorithm 2. Pseüdocode after loop permütation, by moving the spatial featüre map loops (𝑟, 𝑐, 𝑘) to the

oüter and the loops which iterate over the different featüres and filters (𝑛,𝑚) to the innermost positions

1 for (r = 0; r < R; r++) //number of output feature map rows

2 for (c = 0; c < C; c++) //number of output feature map columns

3 for (k1 = 0; k1 < K; k1++) //filter kernel dimension 1

4 for (k2 = 0; k2 < K; k2++) //filter kernel dimension 2

5 for (n = 0; n < N; n++) //number of input feature maps

6 for (m = 0; m < M; m++) //number of output feature maps

7 output[m][r][c] += weights[m][n][k1][k2] *

 input[n][S*r+k1][S*c+k2]

8 if k1 == K && k2 == K && n == N

9 output[m][r][c] += bias[m];

4. TCPA Mapping

In Section 3.3, we proposed to permute the loop dimensions, such that broadcasting of inputs and the

parallel processing of the CNN layers on TCPAs is made possible. The principle of the layer-parallel

processing is shown in Fig. 5(b), and is compared against the sequential layer-by-layer processing (Fig. 5(a)).

Observe that we can start computing the next input frame before the computations for this frame through all

layers are finished (pipelining). Second, the layers are computed in parallel and do not need to wait until the

previous layer has finished the computation of all feature maps.

(a) Seqüential layer-by-layer processing (b) Layer-parallel processing

Fig. 5. Exploitation of parallelism in processing CNNs. In (a), the conventional layer-by-layer processing is

shown. Here, all the layers of the net need to be computed before the next frame (Input 1) can start. In (b),

our approach to layer-parallel processing is shown. The approach combines pipelined processing of frames

with parallel processing of layers. 𝐿 depicts the CNN’s latency to process one input frame.

Journal of Computers

547 Volume 14, Number 8, August 2019

Additionally, we may exploit the parallel processing of the layers using different PEs of a TCPA. For that,

the inner loops (𝑑, 𝑝) are unrolled (Algorithm 3). Moreover, we exploit ILP (instruction-level parallelism) for

each PE and loop-level parallelism by using multiple PEs for each layer. Loop-level parallelism is achieved by

assigning ⌈
𝑀

𝑃
⌉ filters (see Fig. 6(b)) to each PE. Instruction-level parallelism (ILP) is exploited by execution

multiple instructions in parallel by parallelizing over the number of input features 𝑁, using the 𝛿 available

functional units. The number of connections, because we need to transfer 𝛿 values in parallel between the

PEs and the functional units (i.e., number of multipliers and adders for one MAC operation) within each PE

determines 𝛿.

(a) Mapping of layers onto a TCPA (4x4 PEs) (b) Example of filters of Conv0 mapped onto 4 PEs

Fig. 6. Example of a layer-parallel mapping of five layers of the CNN in Fig. 1(b) (shown by different colors)

to a TCPA (a). The black arrows depict the flow of data. For layer 0, each PE is assigned the computations of

⌈
𝑀0

𝑃0
⌉ = ⌈

24

4
⌉ =6 filters (b). Conv0 is shown mapped to 𝑃0 = 4 PEs at location (0,0), (0,1), (1,0), and (1,1) of

the TCPA.

Algorithm 3. Resulting loop nest for parallel execution of one layer of a CNN on a TCPA. Shown is the

program for PE 𝑝, 0 ≤ 𝑝 < 𝑃. Whereas the outer loops (𝑟, 𝑐, 𝑘1, 𝑘2, 𝑛,𝑚) are processed sequentially, note

that multiple PEs execute multiple filters in parallel. Finally, the innermost loop (𝑑) corresponds to parallel

computations performed within each PE (ILP)

1 for (r = 0; r < R; r++) //number of output feature map rows

2 for (c = 0; c < C; c++) //number of output feature map columns

3 for (k1 = 0; k1 < K; k1++) //filter kernel dimension 1

4 for (k2 = 0; k2 < K; k2++) //filter kernel dimension 2

5 for (n = 0; n < N; n+=delta) //number of input feature maps

6 for (m = p; m < M; m+=P) //number of output feature maps

7 forall (d = 0; d < delta; d++)

8 output[m][r][c] += weights[m][n+d][k1][k2] *

 input[m][S*r+k1][S*c+k2];

8 if (k1 == K-1 && k2 == K-1 && n == N-1)

9 output[m][r][c] += bias[m];

Algorithm 3 depicts the fully parallelized loop program for one layer based on 𝑃 PEs of the TCPA.

Altogether, our approach combines parallelism at three levels: a) Each filter is processed in parallel by

Journal of Computers

548 Volume 14, Number 8, August 2019

assigning multiple PEs and thus generating one program for each PE. Inside each PE, b) we exploit ILP by

using the multiple functional units of each PE. Finally c), different portions of the TCPA execute also the

different layers in parallel, see, e.g., Fig. 6(a) (layer-parallel execution). In the following, we present a

performance and memory calculus that

1) Determines pipelined implementations to minimize the times 𝑍𝑖 between the start times of subsequent

layers.

2) Shows how to reduce the amount of intermediate memory required in layer-parallel processing.

5. Performance and Memory Calculus

In this section, we develop a calculus for both layer-by-layer and layer-parallel execution that formalizes

how to calculate the latency 𝐿, throughput 𝑇, and memory 𝐵 of a given CNN mapped to a target TCPA. The

convolutional and pooling layers are considered to be processed in parallel on the TCPA. Note that fully-

connected layers require (in comparison to convolutional layers) few computations but many memory

transfers. They thus do not benefit from being accelerated on a TCPA in the described fashion. Therefore, in

the following, we assume that fully-connected layers are executed elsewhere (for example, the Processor

(LEON3) of a TCPA tile as shown in Fig. 1(a)). We further assume that adequate peripheral hardware is in

place to provide all necessary data (weights, intermediate output values) in time.

5.1. Latency of Layer-by-Layer Execution

Since in this mode of execution, each layer is run to completion before its successor starts, the latency 𝐿

of the CNN, consisting of 𝑉 layers, is given by the sum of the layer latencies 𝐿𝑖:

𝐿

=∑𝐿𝑖

𝑉−1

𝑖=0

.

(3)

According to Algorithm 1, each layer 𝑖 has to compute

𝑅𝑖+1 ⋅ 𝐶𝑖+1⏟
resolution

⋅ 𝑀𝑖⏟
filter count

⋅ 𝑁𝑖⏟
input depth

⋅ 𝐾𝑖
2
⏟

window size

Operations. However, as described in Section 4, even when executing layer-by-layer, we may still exploit

loop-level and instruction-level parallelism by dividing the computations of 𝑀𝑖 filters among 𝑃𝑖 processing

elements and the 𝑁𝑖 input feature maps among 𝛿𝑖 functional units, yielding

 𝐿𝑖 = 𝑅𝑖+1 ⋅ 𝐶𝑖+1 ⋅ ⌈
𝑀𝑖
𝑃𝑖
⌉ ⋅ ⌈
𝑁𝑖
𝛿𝑖
⌉ ⋅ 𝐾𝑖

2
(4)

Given a clock frequency 𝑓 of the target TCPA, the throughput 𝑇𝑠𝑒𝑞𝑢 for sequential processing in frames

per second is given by

 𝑇𝑠𝑒𝑞𝑢 =
𝑓

𝐿
 (5)

5.2. Latency of Layer-Parallel Execution

As explained in Section 4 and illustrated in Fig. 5(b), by layer-parallel execution, we denote the pipelining

Journal of Computers

549 Volume 14, Number 8, August 2019

of subsequent layers of a CNN. Compared to layer-by-layer execution, for layer-parallel execution, we have

to consider two peculiarities: 1) layer execution overlaps, meaning that a layer may start as soon as enough

output pixels from its predecessor are available, and 2) to never stall this pipeline of layers, all throughputs

must be matched. Layer fusion and the loop transformations from Section 3.3 all serve to facilitate this

process. Both peculiarities rely on how long it takes a layer 𝑖 to compute a part of its output such that the

next layer can start processing. To calculate a single output pixel, a filter must perform 𝑁𝑖 ⋅ 𝐾𝑖
2 operations,

and 𝑀𝑖 filters must be computed. In Section 4, we explained how to execute the computation of all 𝑀𝑖

filters and 𝑁𝑖 input feature maps of one layer in parallel by using 𝑃𝑖 processing elements and 𝛿𝑖 functional

units. Obviously, it takes

 𝑧𝑖
𝑜𝑢𝑡 = ⌈

𝑀𝑖

𝑃𝑖
⌉ ⋅ ⌈

𝑁𝑖

𝛿𝑖
⌉ ⋅ 𝐾𝑖

2 (6)

Cycles to produce the 𝑀𝑖 output pixels for each coordinate (𝑟, 𝑐). Consequently, the previous layer 𝑖 − 1

must be able to provide sufficiently many input pixels to layer 𝑖 within this time frame to never stall the

pipeline. Because both convolving and pooling are window operations, it depends on the stride 𝑆𝑖 and

kernel size 𝐾𝑖 how many new pixels are necessary (the remaining pixels are reused from previous

calculations) to compute 𝑀𝑖 output pixels once the pipeline is filled. Let:

 𝐹𝑖 = min(𝐾𝑖
2, 𝑆𝑖

2). (7)

(There are never more new pixels needed than the entire window.) Consequently, layer 𝑖 − 1 takes

 𝑧𝑖−1
𝑜𝑢𝑡 ⋅ 𝐹𝑖 =: 𝑧𝑖

𝑖𝑛 (8)

Cycles to provide the necessary number of 𝐹𝑖 ⋅ 𝑀𝑖 pixels. To not starve the pipeline, it must therefore hold

that

 𝑧𝑖
𝑖𝑛 ≤ 𝑧𝑖

𝑜𝑢𝑡 . (9)

If this inequality is not satisfied, and as the throughputs must be matched—either the previous layer must

be sped up (assigning more PEs, for example), or the current layer must be slowed down (assigning less PEs

or throttled by inserting NOPs, for example). Since we assume layer 𝑖 may start computation as soon as 𝐹𝑖

pixels are available, the interval between the start of the previous layer 𝑖 − 1 and current layer 𝑖 is

 𝑍𝑖 = 𝑧𝑖−1
𝑜𝑢𝑡 ⋅ 𝐹𝑖 = 𝑧𝑖

𝑖𝑛. (10)

The start time 𝑡𝑖 and latency 𝐿𝑖 of a layer 𝑖 are then

 𝑡𝑖 =∑𝑍𝑗

𝑖

𝑗=0

 and 𝐿𝑖 = 𝑧𝑖
𝑜𝑢𝑡 ⋅ 𝑅𝑖+1 ⋅ 𝐶𝑖+1, (11)

Since a layer 𝑖 takes 𝑧𝑖
𝑜𝑢𝑡 cycles per output pixel, of which it must compute 𝑅𝑖+1 times 𝐶𝑖+1 .

Accordingly, the Latency 𝐿 of a CNN, consisting of 𝑉 layers, is obtained as the start time plus the latency of

the last layer 𝑉 − 1:

 𝐿 = 𝑡𝑉−1 + 𝐿𝑉−1 (12)

Journal of Computers

550 Volume 14, Number 8, August 2019

The throughput 𝑇𝑝𝑎𝑟 for the parallel processing of the layers in frames per second is given by

 𝑇𝑝𝑎𝑟 =
𝑓

max
0≤𝑖<𝑉

(𝐿𝑖)
 (13)

5.3. Memory Estimation

To map a CNN onto a TCPA, its mapping-dependent storage size must not exceed the size of the available

on-chip buffers 𝐵max . Both layer-by-layer and layer-parallel execution require storing the weights of

convolutional layers, which have a size of 𝐵𝑖
𝑤 = 𝑀𝑖 ⋅ 𝑁𝑖 ⋅ 𝐾𝑖

2. Regarding intermediate outputs, for layer-by-

layer execution, the entire intermediate output must be stored between each pair of subsequent layers. It

follows, the overall required storage for one layer 𝑖 may be evaluated as:

𝐵𝑖 = max

0≤𝑖<𝑉
(𝐵𝑖

𝑤 +𝑁𝑖 ⋅ 𝑅𝑖 ⋅ 𝐶𝑖⏟
input size

+𝑀𝑖 ⋅ 𝑅𝑖+1 ⋅ 𝐶𝑖+1⏟
output size

),
(14)

Because entire feature maps 𝑁𝑖 ⋅ 𝑅𝑖 ⋅ 𝐶𝑖 and 𝑀𝑖 ⋅ 𝑅𝑖+1 ⋅ 𝐶𝑖+1 need to be stored, this usually exceeds the

available buffer size 𝐵max of the target TCPA and intermediate results must be transferred off-chip.

In contrast, for layer-parallel execution, the weights and intermediate outputs for all layers must fit the on-

chip buffers at the same time; however, each layer needs significantly less storage since only part of a feature

map must be stored. Furthermore, the first input and last output (the input and output of the CNN) can be

stored off-chip without influencing the pipeline. Therefore, it must hold that

 𝐵 = ∑ 𝐵𝑖
𝑤𝑉−1

𝑖=0 + ∑ 𝐵𝑖
𝑖𝑛𝑡𝑒𝑟𝑉−1

𝑖=0 ≤ 𝐵max, (15)

where the size of the intermediate values of a convolutional layer 𝑖 is

 𝐵𝑖
𝑖𝑛𝑡𝑒𝑟 = (𝐷𝑖 − 𝑆𝑖) ⋅ 𝐶𝑖 ⋅ 𝑁𝑖 . (16)

Since the filter window is slid across the feature map, each input pixel takes part in the computation of

multiple output pixels of a filter. We precompute all intermediate products of an input pixel in advance,

meaning they must be stored for their entire lifetime. To optimize throughput, the order we compute output

pixels corresponds to the receptive field 𝐷𝑖 of the layer (see Fig. 3). We advance to the next receptive field,

either in horizontal or vertical direction, once the current one is finished. The last precomputed intermediate

product is used after (𝐷𝑖 − 𝑆𝑖) rows (or columns, depending on the scanning direction). This holds for all

𝑁𝑖 feature maps, yielding Eq. (16).

In pooling layers, on the other hand, no values can be precomputed because they have no weights and

usually no overlapping windows. Therefore, pooling layers require an intermediate storage of

 𝐵𝑖
𝑖𝑛𝑡𝑒𝑟 = 𝑁𝑖 . (17)

The reason is that for each input pixel we can immediately compute the resulting intermediate value (i.e.,

by adding on previous value) such that we must not wait until the last value for the complete filter window

arrives.

Example:

Assume a word length of 8 bit (1 byte). For the pooling layers with kernel size 𝐾1 = 𝐾3 = 2, and stride

𝑆1 = 𝑆3 = 2, the windows do not overlap. It is sufficient to store 𝐵1
𝑖𝑛 = 𝐵3

𝑖𝑛 = 𝑁1 = 𝑁3 = 24 bytes for each

Journal of Computers

551 Volume 14, Number 8, August 2019

pooling layer. For convolutional layer 2 (for its parameters see Fig. 1(b)), we need to store 𝐵2
𝑖𝑛 =

((𝐷2 − 𝑆2) ⋅ 𝐶2 +𝐷2 ⋅ 𝑆2) ⋅ 𝑁2 = (8 − 1) ⋅ 14 ⋅ 24 = 2.35 kB, for layer 4 𝐵4
𝑖𝑛 = (3 − 1) ⋅ 7 ⋅ 24 = 336 bytes,

respectively.

6. Evaluation

In the following evaluation, the proposed net (see Fig. 1(b)) will be mapped onto a 4x4 PE TCPA as shown

in Fig. 6(a). The number 𝛿 of available functional units within a PE is assumed to be 𝛿 = 2. Therefore, two

output pixel value computations may be executed in parallel. The configuration time of the TCPA is neglected,

because it is only needed to configure the whole TCPA once at the beginning. The first step of mapping the

net is to assign a number of PEs 𝑃𝑖 to each layer. This is done according to the observation that for a balanced

throughput, the PE number of subsequent layers must be chosen to match the different MACs per layer (see

Fig. 1(b)). Compared to the convolutional layers, the pooling layers have a low number of MACs, thus 1 PE

for each pooling layer is considered sufficient. As we have only 4x4 = 16 PEs and assigning the minimal

number of 1 PE for each pooling layer, 14 PEs remain for the three convolutional layers. An example of this

distribution is shown in Fig. 6(a). After PE assignment, we now compute the latencies of each layer and the

resulting overall throughput. According to Eq.(6), we need 𝑧0
𝑜𝑢𝑡 = ⌈

𝑀0

𝑃0
⌉ ⋅ ⌈

𝑁0

𝛿0
⌉ ⋅ 𝐾0

2 cycles for Conv0 to

produce 𝑀0 = 24 output pixels. Thus, we obtain 𝑧0
𝑜𝑢𝑡 = ⌈

𝑀0

𝑃0
⌉ ⋅ ⌈

𝑁0

𝛿0
⌉ ⋅ 𝐾0

2 = ⌈
24

4
⌉ ⋅ ⌈

1

2
⌉ ⋅ 32 = 54 cycles, see Fig.

7(a). In the following, we compute the values 𝑧𝑖
𝑖𝑛 and 𝑧𝑖

𝑜𝑢𝑡 for all layers.

𝑍𝑖 0 216 216 1,296 1,296

𝑡𝑖 0 216 432 1,728 3,024

𝐿𝑖 42,336 42,336 63,504 63,504 63,504

𝐿 66,528

Fig. 7. Süccessive adjüstments of the latencies regarding Eq. (9). The latencies 𝑧𝑖
𝑖𝑛, 𝑧𝑖

𝑜𝑢𝑡 are given in cycles.

In (a) and (b), the latency 𝑧1
𝑜𝑢𝑡 of Pool1 needs to be increased to 𝑧1

𝑜𝑢𝑡 = 216 cycles. In (c), the latencies of

Conv2 fülfills Eq. (9) (𝑧2
𝑖𝑛 ≤ 𝑧2

𝑜𝑢𝑡). In (d) and (e), the latencies of Pool3, Conv4, respectively, need also to be

increased. The table below shows each layer’s latency 𝐿𝑖 the interval 𝑍𝑖 between the start of the previoüs

layer and the cürrent layer, the starting times 𝑡𝑖 of each layer, and the overall latency 𝐿 = 𝑡4 + 𝐿4.

(a)

(b)

(c)

(d)

(e)

Journal of Computers

552 Volume 14, Number 8, August 2019

The next layer is pooling layer Pool1 with 𝐾1 = 2, 𝑆1 = 2 . According to Eq. (7), 𝐹1 = min(𝐾1
2, 𝑆1

2) =

min(22, 22) = 4 . With Eq. (8), this leads to 𝑧1
𝑖𝑛 = 𝑧0

𝑜𝑢𝑡 ⋅ 𝐹1 = 54 ⋅ 4 = 216 cycles needed such that the

pooling layer can produce again 𝑁1 = 24 output pixels. Here, even with only 𝑃1 = 1 PE, the pooling layer

PE would be far too fast according to 𝑧1
𝑖𝑛 ≤ 𝑧1

𝑜𝑢𝑡 as 𝑧1
𝑜𝑢𝑡 = ⌈

𝑀1

𝑃1
⌉ ⋅ ⌈

𝑁1

𝛿1
⌉ ⋅ 𝐾1

2 = ⌈
1

1
⌉ ⋅ ⌈

24

2
⌉ ⋅ 22 = 48 cycles. This

means that 𝑧1
𝑜𝑢𝑡 needs to be increased to at least 216 cycles. This may be easily accomplished, e.g., by

inserting wait states, NOPs, or other delay. Similarly, we obtain 𝑧2
𝑖𝑛 = 216 , 𝑧2

𝑜𝑢𝑡 = 324 , 𝑧3
𝑖𝑛 = 1,296 =

𝑧3
𝑜𝑢𝑡 = 𝑧4

𝑖𝑛 = 𝑧4
𝑜𝑢𝑡 . For the latency adjustments, regarding Eq. (9), see Fig. 7(b)-(e). Finally, with Eq. (11),

 𝐿4 = 𝑧4
𝑜𝑢𝑡 ⋅ 𝑅5 ⋅ 𝐶5 = 1,296 ⋅ 7 ⋅ 7 = 63,504 cycles and with the start time 𝑡4 = 3,024 of the last layer, we

get the overall latency 𝐿 = 𝑡4 + 𝐿4 = 3,024 + 63,504 = 66,528 cycles according to Eq. (12) until the

computation for all layers except of the Fc layer is finished.

With Eq. (13), the throughput for the given CNN, on a 4x4 PE TCPA, is 𝑇𝑝𝑎𝑟 =
𝑓

max
0≤𝑖<𝑉

𝐿𝑖
=
50⋅106

63,504
= 787.4 fps.

For the layer-by-layer case, we give an example for computing the latency for one layer (Conv2). If 𝑃2 = 8

PEs are used and 𝛿 = 2, with Eq. (4), this results in a latency 𝐿2 of 𝐿2 = 𝑅3 ⋅ 𝐶3 ⋅ ⌈
𝑀2

𝑃2
⌉ ⋅ ⌈

𝑁2

𝛿
⌉ ⋅ 𝐾2

2 = 14 ⋅ 14 ⋅

⌈
24

8
⌉ ⋅ ⌈

24

2
⌉ ⋅ 32 = 63,504 cycles. For the other layers, the latency is computed analogously and with Eq. (3),

the overall latency is the sum of the latencies for each layer. Table 1 shows the comparison for the computed

latencies for the layer-by-layer execution and the layer-parallel execution.

Table 1. Layer-Parallel vs. Layer-by-Layer. Execution on 4x4 (16 PEs). Layer-by-Layer (1) Corresponds to an

Implementation that Uses the Same Number of PEs per Layer as for the Layer-Parallel Case. Layer-by-Layer

(2) Uses all 4x4 PEs Per Layer. *Here, on/off-Chip Communication and Configuration Time is Neglected.

Layer-Parallel (1) Corresponds to the Layer-Parallel Execution on 4x4 PEs, where Conv2 is the Bottleneck

for throughput. In Layer-Parallel (2), four PEs More are Assigned to Conv2, Requiring a TCPA of 4x5 PEs

 Layer-by-layer (1) Layer-by-layer (2) Layer-parallel (1) Layer-parallel (2)

Latency 𝐿 [cycles] 159,936 55,664* 66,528 44,496

Throüghpüt 𝑇 [fps] 312.6 898.2* 787.4 1,181.0

In the following, we also show how to compute the minimal number of PEs required for the whole net to

satisfy a given throughput.

7. Determining the Minimal Number of PEs for a Given Throughput

Based on Section 5.2, we now determine the minimal number of PEs required for each layer to provide a

given throughput 𝑇 in frames per second at the output. The required throughput in pixels per second for

the last layer is therefore

 𝑇𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑅𝑉 ⋅ 𝐶𝑉 ⋅ 𝑇. (18)

With the TCPA’s freqüency 𝑓, the latency 𝑧𝑉−1
𝑜𝑢𝑡 for computing 𝑀𝑉−1 output pixels of the last layer must

be smaller than
𝑓

𝑇𝑝𝑖𝑥𝑒𝑙𝑠
.

Substituting Eq. (6) for 𝑧𝑉−1
𝑜𝑢𝑡 , we obtain:

 ⌈
𝑀𝑉−1

𝑃𝑉−1
⌉ ⋅ ⌈

𝑁𝑉−1

𝛿𝑉−1
⌉ ⋅ 𝐾𝑉−1

2 ≤
𝑓

𝑇𝑝𝑖𝑥𝑒𝑙𝑠
 (19)

Journal of Computers

553 Volume 14, Number 8, August 2019

Hence, we need to determine the smallest value for 𝑃𝑉−1 satisfying

⌈
𝑀𝑉−1

𝑃𝑉−1
⌉ ≤

𝑓

𝑇𝑝𝑖𝑥𝑒𝑙𝑠

⌈
𝑁𝑉−1
𝛿𝑉−1

⌉⋅𝐾𝑉−1
2

 =
𝑓

𝑅𝑉⋅𝐶𝑉⋅𝑇⋅⌈
𝑁𝑉−1
𝛿𝑉−1

⌉⋅𝐾𝑉−1
2

⏟
𝑊𝑉−1

 (20)

To calculate the minimal number of PEs necessary for all preceding layers, Eq. (20) can be solved

analogously.

Example:

Let us assume we want to obtain a throughput of 𝑇 = 100 fps at the output. Again, assuming a clock

frequency of 𝑓 = 50 MHz and 𝛿 = 2, we evaluate the minimal number of PEs required to fulfill Eq. (20)

starting with layer 4. With 𝑀4 = 16, and 𝑊4 =
𝑓

𝑅5⋅𝐶5⋅𝑇⋅⌈
𝑁4
𝛿
⌉⋅𝐾4

2
=

50⋅106

7⋅7⋅100⋅⌈
24

2
⌉⋅32

= 94.5 (the output dimensions

of layer 4 are 𝑅5 = 𝐶5 = 7), the minimal value for 𝑃4 is obtained from ⌈
16

𝑃4
⌉ ≤ 94.5 as 𝑃4 = 1. Analogously,

the PE count 𝑃𝑖 of the remaining layers is computed. In total, our proposed 100 fps-sustained layer-parallel

processing of the net requires only 𝑃 = ∑ 𝑃𝑖
𝑉−1
𝑖=0 = 𝑃0 + 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 = 1 + 1 + 2 + 1 + 1 = 6 PEs.

8. Conclusion

In summary, we have presented an approach for the layer-parallel processing of CNNs on massively

parallel processor arrays that allow for the exploitation of different degrees of parallelism in each layer as

well as between the layers. High throughput layer-parallel implementations have been derived and

compared with corresponding layer-by-layer sequential processing. In the future, we would like to

automatically derive PE numbers for each layer as well as to investigate energy efficiency in relation to other

proposed parallel architectures.

Acknowledgment

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) —

Projektnummer 146371743 — TRR 89 “Invasive Compüting.”

References

[1] Yann, L., Yoshua, B., & Geoffrey, E. H. (2015). Deep learning. Nature, 521(7553), 436-444.

[2] Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651.

[3] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video

classification with CNNs. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp.

1725-1732).

[4] Norman, P. J. (2017). In-Datacenter Performance Analysis of a Tensor Processing Unit. Retrieved from

CoRR abs/1704.04760. url: http://arxiv.org/abs/1704.04760

[5] Inpyo, B., Barend, H., Hyemi, M., & Bernhard, E. (2018). Auto-tuning CNNs for coarse-grained

reconfigurable array-based accelerators. IEEE Trans. on CAD of Integrated Circuits and Systems, 37(11),

2301-2310.

[6] Yu-Hsin, C., Joel, E., & Vivienne, S. (2016). Eyeriss: A spatial architecture for energy-efficient dataflow for

convolutional neural networks. Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA) (pp. 367-379). Piscataway, NJ, USA. IEEE Press.

[7] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014). Diannao: A small-footprint high-

throughput accelerator for ubiquitous machine-learning. ASPLOS.

Journal of Computers

554 Volume 14, Number 8, August 2019

[8] Masakazu, T., Shinya, T. Y., Jun, Y., & Yasuhiko, N. (2015). A CGRA-based approach for accelerating

convolutional neural networks. Proceedings of the IEEE 9th International Symposium on Embedded

Multicore/Many-core Systems-on-Chip (MCSOC) (pp. 73-80). Washington, DC, USA, IEEE Computer

Society.

[9] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. (2015). Optimizing FPGA-based accelerator design

for deep convolutional neural networks. Proceedings of the ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, FPGA ’15 (pp. 161–170). New York, NY, USA. ACM.

[10] Manoj, A., Han, C., Michael, F., & Peter, M. (2016). Fused-layer CNN accelerators. Proceedings of the 49th

Annual IEEE/ACM International Symposium on Microarchitecture, (MICRO) (pp. 1-12). Piscataway, NJ,

USA. IEEE Press.

[11] Zhao, R., Ng, H. C., Wayne, L., & Xinyu, N. (2018). Towards efficient convolutional neural network for

domain-specific applications on FPGA. CoRR, abs/1809.03318.

[12] Frank, H., Vahid, L., Srinivas, B., Alexandru, T., & Oliver, R. (2014). Invasive tightly-coupled processor

arrays: A domain-specific architecture/compiler codesign approach. ACM Transactions on Embedded

Computing Systems (TECS), 13(4s), 1-29.

[13] Éricles, R. Sousa., Alexandru, T., Frank, H., & Jürgen, T. Accuracy and performance analysis of Harris

corner computation on tightly-coupled processor arrays. Proceedings of the Conference on Design and

Architectures for Signal and Image Processing (DASIP) (pp. 88–95). IEEE.

[14] Yann, L., & Corinna, C. (2010). MNIST Handwritten Digit Database.

Christian Heidorn received his M.Sc. degree in medical engineering from Friedrich-

Alexander University Erlangen-Nü rnberg (FAU), Erlangen, Germany, in 2018. Cürrently, he is

working as a scientific researcher at the Chair for Hardware/Software Co-design (FAU). His

research focüses on the application of deep learning to co-processors for embedded devices.

Michael Witterauf received his diploma degree in compüter science from Friedrich-

Alexander-Universita t Erlangen-Nü rnberg (FAU), Erlangen, Germany, in 2014. He is cürrently

employed as a scientific researcher at the Chair for Hardware/Software Co-design (FAU). His

research interests inclüde compiler constrüction and hardware development, especially in

the domains of embedded systems and application-specific acceleration.

Frank Hannig received the diploma degree in an interdisciplinary coürse of stüdy in

electrical engineering and compüter science from the University of Paderborn, Germany, in

2000; the Ph.D. degree (Dr.-Ing.) and habilitation degree in compüter science from Friedrich-

Alexander University Erlangen-Nü rnberg (FAU), Germany, in 2009 and 2018, respectively. He

has led the architectüre and compiler design groüp in the Compüter Science Department, FAU,

since 2004. His primary research interests are the design of massively parallel architectüres,

ranging from dedicated hardware to mülticore architectüres, mapping methodologies for domain-specific

compüting, and architectüre/compiler codesign. He has aüthored or coaüthored more than 160 peer-

reviewed püblications.

Journal of Computers

555 Volume 14, Number 8, August 2019

Dr. Hannig serves on the program committees of several international conferences (ARC, ASAP, CODES+ISSS,

DATE, DASIP, SAC). He is a senior member of the IEEE and an affiliate member of the Eüropean network of

excellence on High Performance and Embedded Architectüre and Compilation (HiPEAC).

Jürgen Teich received the M.Sc. degree (Dipl.-Ing. with honors) from the University of

Kaiserslaütern, Kaiserslaütern, Germany, in 1989 and the Ph.D degree (sümma cüm laüde)

from the University of Saarland, Saarbrü cken, Germany, in 1993. In 1994, he joined the DSP

design groüp of Prof. E. A. Lee in the Department of Electrical Engineering and Compüter

Sciences (EECS), University of California at Berkeley, Berkeley, CA, USA (postdoctoral work).

From 1995 to 1998, he held a position at the Institüte of Compüter Engineering and

Commünications Networks Laboratory (TIK), ETH Zürich, Zürich, Switzerland (habilitation). From 1998 to

2002, he was the füll professor in the Electrical Engineering and Information Technology Department,

University of Paderborn, Paderborn, Germany. Since 2003, he has been füll professor in the Department of

Compüter Science, Friedrich-Alexander University Erlangen-Nü rnberg (FAU), Erlangen, Germany, holding a

chair in hardware/software co-design.

Prof. Teich is a fellow of the IEEE and member of the Academia Eüropaea. Since 2010, he is the coordinator

of the Transregional Research Center 89 on Invasive Compüting fünded by the German Research Foündation

(DFG).

Journal of Computers

556 Volume 14, Number 8, August 2019

